Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Microlife ; 5: uqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623411

RESUMEN

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

2.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457455

RESUMEN

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Asunto(s)
Proteínas Bacterianas , Ácido Succínico , Animales , Proteínas Bacterianas/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica , Mamíferos/metabolismo
3.
BMJ Open ; 14(1): e076477, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199617

RESUMEN

INTRODUCTION: Invasive non-typhoidal Salmonella (iNTS) serovars are a major cause of community-acquired bloodstream infections in sub-Saharan Africa (SSA). In this setting, Salmonella enterica serovar Typhimurium accounts for two-thirds of infections and is associated with an estimated case fatality rate of 15%-20%. Several iNTS vaccine candidates are in early-stage assessment which-if found effective-would provide a valuable public health tool to reduce iNTS disease burden. The CHANTS study aims to develop a first-in-human Salmonella Typhimurium controlled human infection model, which can act as a platform for future vaccine evaluation, in addition to providing novel insights into iNTS disease pathogenesis. METHODS AND ANALYSIS: This double-blind, safety and dose-escalation study will randomise 40-80 healthy UK participants aged 18-50 to receive oral challenge with one of two strains of S. Typhimurium belonging to the ST19 (strain 4/74) or ST313 (strain D23580) lineages. 4/74 is a global strain often associated with diarrhoeal illness predominantly in high-income settings, while D23580 is an archetypal strain representing invasive disease-causing isolates found in SSA. The primary objective is to determine the minimum infectious dose (colony-forming unit) required for 60%-75% of participants to develop clinical or microbiological features of systemic salmonellosis. Secondary endpoints are to describe and compare the clinical, microbiological and immunological responses following challenge. Dose escalation or de-escalation will be undertaken by continual-reassessment methodology and limited within prespecified safety thresholds. Exploratory objectives are to describe mechanisms of iNTS virulence, identify putative immune correlates of protection and describe host-pathogen interactions in response to infection. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the NHS Health Research Authority (London-Fulham Research Ethics Committee 21/PR/0051; IRAS Project ID 301659). The study findings will be disseminated in international peer-reviewed journals and presented at national/international stakeholder meetings. Study outcome summaries will be provided to both funders and participants. TRIAL REGISTRATION NUMBER: NCT05870150.


Asunto(s)
Canto , Fiebre Tifoidea , Vacunas , Humanos , Salmonella , Londres , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Appl Environ Microbiol ; 89(9): e0062323, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668405

RESUMEN

Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.


Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Filogenia , Evolución Biológica , Bacterias , Inglaterra
5.
J Med Microbiol ; 72(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294286

RESUMEN

Background. Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) has been linked to outbreaks of foodborne gastroenteritis disease, and the emergence of antimicrobial-resistant clones. In Colombia, laboratory surveillance of Salmonella spp. between 1997-2018 revealed that S. Typhimurium was the most ubiquitous serovar (27.6 % of all Salmonella isolates), with increasing levels of resistance to several families of antibiotics.Hypothesis. Resistant isolates of S. Typhimurium recovered from human clinical, food and swine samples carry class 1 integrons that are linked to antimicrobial resistance genes.Aim. Identify class 1 integrons, and investigate their association with other mobile genetic elements, and their relationship to the antimicrobial resistance of Colombian S. Typhimurium isolates.Methods. In this study, 442 isolates of S. Typhimurium were analysed, of which 237 were obtained from blood culture, 151 from other clinical sources, 4 from non-clinical sources and 50 from swine samples. Class 1 integrons and plasmid incompatibility groups were analysed by PCR and whole-genome sequencing (WGS), and regions flanking integrons were identified by WGS. The phylogenetic relationship was established by multilocus sequence typing (MLST) and single-nucleotide polymorphism (SNP) distances for 30 clinical isolates.Results . Overall, 39 % (153/392) of the human clinical isolates and 22 % (11/50) of the swine S. Typhimurium isolates carried complete class 1 integrons. Twelve types of gene cassette arrays were identified, including dfr7-aac-bla OXA-2 (Int1-Col1), which was the most common one in human clinical isolates (75.2 %, 115/153). Human clinical and swine isolates that carried class 1 integrons were resistant to up to five and up to three antimicrobial families, respectively. The Int1-Col1 integron was most prevalent in stool isolates and was associated with Tn21. The most common plasmid incompatibility group was IncA/C.Conclusions. The widespread presence of the IntI1-Col1 integron in Colombia since 1997 was striking. A possible relationship between integrons, source and mobile elements that favour the spread of antimicrobial resistance determinants in Colombian S. Typhimurium was identified.


Asunto(s)
Salmonelosis Animal , Salmonella enterica , Porcinos , Animales , Humanos , Salmonella typhimurium/genética , Integrones/genética , Colombia/epidemiología , Tipificación de Secuencias Multilocus , Filogenia , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Salmonella enterica/genética
7.
PLoS Negl Trop Dis ; 16(12): e0010982, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508466

RESUMEN

BACKGROUND: Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. METHODOLOGY: Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. FINDINGS: 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S. Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. CONCLUSIONS: The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid (S. Typhi) carrier state was not detected. The lack of S. Typhi isolates from the household environment suggests that further methodological development is needed to culture S. Typhi from the environment.


Asunto(s)
Infecciones por Salmonella , Fiebre Tifoidea , Animales , Humanos , Malaui/epidemiología , Estudios de Casos y Controles , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Fiebre Tifoidea/epidemiología , Salmonella typhi
8.
Microbiol Spectr ; 10(6): e0318222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409092

RESUMEN

Salmonella enterica serovar Enteritidis is one of the most commonly reported serovars of nontyphoidal Salmonella causing human disease and is responsible for both gastroenteritis and invasive nontyphoidal Salmonella (iNTS) disease worldwide. Whole-genome sequence (WGS) comparison of Salmonella Enteritidis isolates from across the world has identified three distinct clades, global epidemic, Central/East African, and West African, all of which have been implicated in epidemics: the global epidemic clade was linked to poultry-associated gastroenteritis, while the two African clades were related to iNTS disease. However, the distribution and epidemiology of these clades across Africa are poorly understood because identification of these clades currently requires whole-genome sequencing capacity. Here, we report a sensitive, time- and cost-effective real-time PCR assay capable of differentiating between the Salmonella Enteritidis clades to facilitate surveillance and to inform public health responses. The assay described here is limited to previously confirmed S. Enteritidis isolates. IMPORTANCE Challenges in the diagnosis and treatment of invasive Salmonella Enteritidis bloodstream infections in sub-Saharan Africa are responsible for a case fatality rate of approximately 15%. It is important to identify distinct clades of S. Enteritidis in diagnostic laboratories in the African setting to determine the different health outcomes associated with particular outbreaks. Here, we describe the development of a high-quality molecular classification assay for clade typing of S. Enteritidis that is ideal for use in public health laboratories in resource-limited settings.


Asunto(s)
Gastroenteritis , Infecciones por Salmonella , Salmonella enterica , Animales , Humanos , Salmonella enteritidis/genética , Reacción en Cadena de la Polimerasa Multiplex , Infecciones por Salmonella/diagnóstico , Infecciones por Salmonella/epidemiología , Aves de Corral , Salmonella enterica/genética
9.
Nucleic Acids Res ; 50(9): 5191-5207, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544231

RESUMEN

Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterize a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR-family homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localized with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.


Asunto(s)
Bacterias , Factores de Transcripción , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/genética , Islas Genómicas/genética , Plásmidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nat Commun ; 13(1): 2920, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614058

RESUMEN

Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the ß-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.


Asunto(s)
Proteínas Bacterianas , Propilenglicol , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Orgánulos/metabolismo , Propilenglicol/metabolismo
11.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163175

RESUMEN

Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5' untranslated region that is instructive for a secondary pid mRNA species, and has a 3' Rho-independent termination loop that is responsible for stability of the pid transcript.


Asunto(s)
Bacteriófago P22/genética , Regulación Viral de la Expresión Génica/genética , Bacteriófagos/genética , Expresión Génica/genética , Sistemas de Lectura Abierta/genética , Operón , Regiones Promotoras Genéticas/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/virología
12.
Genome Biol ; 22(1): 349, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34930397

RESUMEN

We have developed an efficient and inexpensive pipeline for streamlining large-scale collection and genome sequencing of bacterial isolates. Evaluation of this method involved a worldwide research collaboration focused on the model organism Salmonella enterica, the 10KSG consortium. Following the optimization of a logistics pipeline that involved shipping isolates as thermolysates in ambient conditions, the project assembled a diverse collection of 10,419 isolates from low- and middle-income countries. The genomes were sequenced using the LITE pipeline for library construction, with a total reagent cost of less than USD$10 per genome. Our method can be applied to other large bacterial collections to underpin global collaborations.


Asunto(s)
Genoma Bacteriano , Secuenciación Completa del Genoma/métodos , ADN Bacteriano/aislamiento & purificación , Genoma , Humanos , Salmonella enterica/genética , Secuenciación Completa del Genoma/economía
13.
Nucleic Acids Res ; 49(19): 11257-11273, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34657954

RESUMEN

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.


Asunto(s)
Proteínas Bacterianas/química , Colifagos/genética , Enzimas de Restricción-Modificación del ADN/química , Escherichia coli/genética , Escherichia/genética , Plásmidos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Colifagos/metabolismo , Cristalografía por Rayos X , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Escherichia/metabolismo , Escherichia/virología , Escherichia coli/metabolismo , Escherichia coli/virología , Expresión Génica , Islas Genómicas , Genómica/métodos , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
14.
Cell Host Microbe ; 29(11): 1620-1633.e8, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597593

RESUMEN

Temperate phages are pervasive in bacterial genomes, existing as vertically inherited islands termed prophages. Prophages are vulnerable to predation of their host bacterium by exogenous phages. Here, we identify BstA, a family of prophage-encoded phage-defense proteins in diverse Gram-negative bacteria. BstA localizes to sites of exogenous phage DNA replication and mediates abortive infection, suppressing the competing phage epidemic. During lytic replication, the BstA-encoding prophage is not itself inhibited by BstA due to self-immunity conferred by the anti-BstA (aba) element, a short stretch of DNA within the bstA locus. Inhibition of phage replication by distinct BstA proteins from Salmonella, Klebsiella, and Escherichia prophages is generally interchangeable, but each possesses a cognate aba element. The specificity of the aba element ensures that immunity is exclusive to the replicating prophage, preventing exploitation by variant BstA-encoding phages. The BstA protein allows prophages to defend host cells against exogenous phage attack without sacrificing the ability to replicate lytically.


Asunto(s)
Bacteriófagos , Profagos , Bacteriófagos/genética , Genoma Bacteriano , Profagos/genética , Salmonella
15.
RNA ; 27(12): 1512-1527, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34497069

RESUMEN

The FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. While the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the amino-terminal FinO domain and the variable carboxy-terminal region that are required for ProQ activity. Two carboxy-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. In contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of nonfunctional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mutagénesis , Proteasa La/metabolismo , Control de Calidad , ARN Bacteriano/genética , Proteínas de Unión al ARN/metabolismo , Salmonella enterica/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ARN/genética , Salmonella enterica/genética , Salmonella enterica/crecimiento & desarrollo
16.
PLoS Pathog ; 17(8): e1009280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460873

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Virulencia , Proteínas Bacterianas/genética , Citosol/microbiología , Islas Genómicas , Células HeLa , Humanos , RNA-Seq , Infecciones por Salmonella/metabolismo
17.
Viruses ; 13(3)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804216

RESUMEN

In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in Sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in Sub-Saharan Africa.


Asunto(s)
Bacteriófagos , Infecciones por Salmonella/terapia , Salmonella enteritidis/virología , Salmonella typhimurium/virología , Sepsis/microbiología , Humanos , Malaui/epidemiología , Infecciones por Salmonella/virología , Salmonella enteritidis/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Reino Unido/epidemiología , Microbiología del Agua
18.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766909

RESUMEN

We report the complete genome sequencing and annotation of four Salmonella enterica serovar Enteritidis isolates, two that are representative of the Central/Eastern African clade (CP255 and D7795) and two of the Global Epidemic clade (A1636 and P125109).

19.
Mol Biol Evol ; 38(6): 2209-2226, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33502519

RESUMEN

Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Animales , Femenino , Genoma Bacteriano , Humanos , Pulmón/microbiología , Ratones , Nasofaringe/microbiología , Distribución Aleatoria , Streptococcus pneumoniae/genética , Factores de Virulencia
20.
Clin Infect Dis ; 73(4): 631-641, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33493332

RESUMEN

BACKGROUND: The Global Enteric Multicenter Study (GEMS) determined the etiologic agents of moderate-to-severe diarrhea (MSD) in children under 5 years old in Africa and Asia. Here, we describe the prevalence and antimicrobial susceptibility of nontyphoidal Salmonella (NTS) serovars in GEMS and examine the phylogenetics of Salmonella Typhimurium ST313 isolates. METHODS: Salmonella isolated from children with MSD or diarrhea-free controls were identified by classical clinical microbiology and serotyped using antisera and/or whole-genome sequence data. We evaluated antimicrobial susceptibility using the Kirby-Bauer disk-diffusion method. Salmonella Typhimurium sequence types were determined using multi-locus sequence typing, and whole-genome sequencing was performed to assess the phylogeny of ST313. RESULTS: Of 370 Salmonella-positive individuals, 190 (51.4%) were MSD cases and 180 (48.6%) were diarrhea-free controls. The most frequent Salmonella serovars identified were Salmonella Typhimurium, serogroup O:8 (C2-C3), serogroup O:6,7 (C1), Salmonella Paratyphi B Java, and serogroup O:4 (B). The prevalence of NTS was low but similar across sites, regardless of age, and was similar among both cases and controls except in Kenya, where Salmonella Typhimurium was more commonly associated with cases than controls. Phylogenetic analysis showed that these Salmonella Typhimurium isolates, all ST313, were highly genetically related to isolates from controls. Generally, Salmonella isolates from Asia were resistant to ciprofloxacin and ceftriaxone, but African isolates were susceptible to these antibiotics. CONCLUSIONS: Our data confirm that NTS is prevalent, albeit at low levels, in Africa and South Asia. Our findings provide further evidence that multidrug-resistant Salmonella Typhimurium ST313 can be carried asymptomatically by humans in sub-Saharan Africa.


Asunto(s)
Infecciones por Salmonella , Antibacterianos/farmacología , Niño , Preescolar , Humanos , Kenia/epidemiología , Tipificación de Secuencias Multilocus , Filogenia , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA